Moment of Inertia

1 Purpose

To determine experimentally and theoretically the moments of inertia of a disk and rings of
definite thickness about various rotational axes. To show that the moment of inertia depends
on the geometry of the rotating object, the moment of inertia of objects sharing an axis of
rotation are additive, that the moment of inertia increases as the distribution of mass moves
farther away from the axis of rotation, to verify the parallel axes theorem, and to study the
relationships between torque and rotational motion.

2 Theory
Newton’s second law for rotation is given as
Y r=Ia (1)

where 7 are the torques on the rotating object, I is the moment of inertia of the rotating
object, and « is the angular acceleration of the rotating object.

The moment of inertia I plays essentially the same role in rotation as the mass m does

in translational motion. The moment of inertia is the property of a body to resist changes
of its rotational state about a rotational axis.

2.1 Review of rotational motion

Rotation Equations | Relation to Linear Motion
w=df/dt v =wr
a = dw/dt = d*0/dt* a=ar
T = TJ_F
T= I« F'=ma




From the diagram below we see that the applied torque 7, on the rotating platform is
due to the tension T of the string that is wrapped around the axis of rotation.
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Figure 1
The net torque 7,,; on the rotating platform is given by
Tnet = Ta — Tf (2)

where 7y is a frictional torque. The net torque of the rotating platform is also equal to
Thet = lCv. (3)
Manipulating the above two equations gives
To = Lo+ 74 (4)
The applied torque 7, can be calculated as
To=1T (5)
and the angular acceleration a can be obtained from the linear acceleration as

a=alr (6)



Using Newton’s second law, the net force on the hanging weight is
Free =mg—T =ma
T =mg —ma (7)

such that the tension 7' can also be calculated using the acceleration.

The moment of inertia I is actually the sum of all of the moments of inertia of each
component bodies, i.e.

]:]5+Ia (8)

where I, is the moment of inertia of the rotating support and I, is the moment of inertia of
the accesory body.

2.2 Parallel Axis Theorem

The parallel axis theorem states that the moment of inertia of any body about an axis (not
passing through the CM) is
[ = I+ Md* (9)

where I, is the moment of inertia of the body about an axis passing through its center of
mass, M is the mass of the body, and d is the distance between the the two parallel axes.



The moment of inertia of a disk and rings with respect to different axes orientation are
given in the following figure.
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3 Procedure

1. Assemble equipment as directed by your lab instructor. The long bar will be mounted
on the rotary support using two screws.
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2. Measure:

the diameter of the rotary support axis

the mass and diameter of the disk

the diameter of the inner and outer edge of both cylindrical rings

the mass of both cylindrical rings

hanger (g)
diameter rotary support (cm)
mass disk (g)
diameter disk (cm)
mass ring 1 (g)
outer diameter ring 1 (cm)
inner diameter ring 1 (cm)
mass ring 2 (g)
outer diameter ring 2 (cm)
inner diameter ring 2 (cm)

3. Measure the acceleration of 5 different hanging weights, hanger (=~ 50g) + up to 6 x
20g weights, using the smart pulley arrangement for the following configurations:

e rotary support with attached long bar (3a) [hanger + 4 x 20g]

]

Figure 3a

e rotary support with attached long bar with single disk (3b) mounted horizontally
[(hanger + 20g) + 4 x 20g]



Figure 3b

e rotary support with attached long bar with single ring (3c) mounted horizontally
[(hanger + 20g) + 4 x 20g]

Figure 3c

e rotary support with attached long bar with two rings (3d) mounted horizontally
one on top of the other [(hanger + 40g) + 4 x 20g]

Figure 3d

e rotary support with attached long bar with two rings (3e) mounted horizontally
side by side [(hanger + 40g) + 4 x 20g]

Figure 3e



e rotary support with attached long bar with a single ring (3f) mounted vertically
[(hanger + 20g) + 4 x 20g]

Figure 3f



4. Arrange your data as such:

To measure

To calculate

Configuration hanging mass m (g) a (m/s?) T (N) 7o (Nm) o (rad/s?)
support+bar Fig. 3a
support+bar Fig. 3a
support+bar Fig. 3a
support+bar Fig. 3a
support+bar Fig. 3a

support+bar + 1 horizontal disk Fig. 3b

support+bar +

horizontal disk Fig. 3b

support+bar +

horizontal disk Fig. 3b

support+bar +

horizontal disk Fig. 3b

support+bar +

horizontal disk Fig. 3b

support+bar +

horizontal ring Fig. 3c

support+bar +

horizontal ring Fig. 3c

support+bar +

1
1
1
1
support+bar + 1 horizontal ring Fig. 3c
1
1
1 horizontal ring Fig. 3c
1

support+bar +

horizontal ring Fig. 3c

support-+bar + 2 horizontal rings Fig. 3d

support+bar + 2 horizontal rings Fig. 3d

support-+bar + 2 horizontal rings Fig. 3d

support-+bar + 2 horizontal rings Fig. 3d

support4bar 4+ 2 horizontal rings Fig. 3d

support+bar + 2 horizontal rings Fig. 3e

support+bar + 2 horizontal rings Fig. 3e

support+bar + 2 horizontal rings Fig. 3e

support+bar + 2 horizontal rings Fig. 3e

support+bar 4+ 2 horizontal rings Fig. 3e

support+bar +

vertical ring Fig. 3f

support+bar +

vertical ring Fig. 3f

support+bar +

vertical ring Fig. 3f

support+bar +

vertical ring Fig. 3f

support+bar +

1
1
support+bar + 1 vertical ring Fig. 3f
1
1
1

vertical ring Fig. 3f




Interpretation of Results

. For each configuration, plot 7, vs. a and give a table of values for each graph. Use
linear regression to find the best-fit slope. The slope of your linear regression gives the
TOTAL moment of inertia. Summarize your total moments of inertia and configura-
tions in a table.

. The analysis of this interpretation should show that by changing the geometry (and
mass distribution) of the rotating object, the moment of inertia will also change. Com-
pare the moment of inertia of the ring to the moment of inertia of the disk. The mass of
the disk is uniformly distributed from the center to the edge giving a smaller moment
of inertia to that of a ring of similar mass and diameter. The total moment of inertia
for the support+bar + disk configuration is Iyo; = Isip + Lgisk- Use Lgisk = Lot — Lsia
and your results of interpretation 1 to determine the moment of inertia of the disk of
Fig. 3b. Use Iring = liot — 54 and your results of interpretation 1 to determine the
moment of inertia of the ring of Fig. 3c. Verify that the ratio of %Zf—zz’; is slightly
less than 2. It should not give exactly two as the ring also has an inner diameter
smaller than the outer diameter such that some of the mass is distributed towards the
center. The mass ratio T’Zf—zi’; is used to compensate for the mass difference between

disk and ring.

. The analysis of this interpretation should show that the moment of inertia of objects
sharing an axis of rotation are additive. For the ring configurations of Figures 3¢ and
3d, the total moment of inertia for the support+bar + ring configuration is I;,; =
Iy + Ling. Use Iing = Iior — Isyp and your results of interpretation 1 to determine
the moment of inertia of the single ring of Fig. 3c and of the double ring configuration
of Fig. 3d. The moment of inertia of objects sharing an axis of rotation are additive
if the moment of inertia of the double ring is two times the moment of inertia of the
single ring. According to your results, are the moments of inertia of objects sharing
an axis of rotation additive? To substantiate your answer, determine the percentage
difference between the moment of inertia of the double ring and twice the moment of
inertia of the single ring.

. The analysis of this interpretation should show that the moment of inertia increases
as the distribution of mass moves farther away from the axis of rotation. You will
compare the moments of inertia of the rings of configurations of Figures 3c and 3f, the
rings of configurations of Figures 3¢ and 3e.

(a) Use I ing = Lot — L5+ and your results of interpretation 1 to determine the moment
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of inertia of the single ring of Fig. 3f. The moment of inertia of the ring of Fig.
3c has been determined in interpretation 2. The mass distribution of the ring of
Fig. 3c is farther from the axis of rotation than that of the ring of Fig. 3f, is the
moment of inertia of the ring of Fig. 3c greater than the moment of inertia of the
ring of Fig. 3f7

(b) We have shown in interpretation 2 that the moments of inertia of objects sharing
an axis of rotation are additive. This implies that the moment of inertia of one of
the rings of Fig. 3e is half of that of the two rings, thus, use f,;,, = % (Lior — Lsip)
to determine the moment of inertia of one of the rings of Fig. 3e. The mass
distribution of one ring of Fig. 3e is farther from the axis of rotation than that
of the ring of Fig. 3c, is the moment of inertia of one ring of Fig. 3e greater than
the moment of inertia of Fig. 3c¢?

According to your previous two comparisons, how does the moment of inertia change
as the distribution of mass moves farther away from the axis of rotation?

. Use the theoretical equations for the moments of inertia of Figure 2 to determine the
theoretical moments of configurations of Figure 3b, 3c, 3e, and 3f. The mass M,
radii R; and R, are taken from Procedure 2. You can average the mass and the two
diameters of the two rings. Compare these theoretical results with the correponding
experimental moments of inertia previously determined in interpretation 2, 3, and
4. Generate a table summarizing the configuration, the experimental and theoretical
moments of inertia and percentage difference.

. The moment of inertia of a cylindrical ring with respect to its longitudinal axis is [ =
%M (R1® + Ry%). Use the parallel axes theorem to show algebraically and theoretically
(no numbers allowed, just variables) that the moment of inertia of a cylindrical ring
with respect to an axis of rotation touching the outer edge of the ring and parallel to
the longitudinal axis is [ = SM(R;* + 3 Ry®). Calculate I = $M(R;* + 3 Ry%), does
the experimental moment of inertia of the two rings of Fig. 3e divided by two confirm
this theoretical result?

. (exploratory question, there is no wrong answer) The y-intercepts of your linear regres-
sion of interpretation 1 represents the frictional torque for that particular configuration.
Generate a table of values with columns of configuration, frictional torque, total mo-
ment of inertia, total mass of the configuration. Does the frictional torque change
much for different configurations? If it does, do the total moment of inertia and mass
associated with the configuration affect the frictional torque? If so, is the relationship
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proportional or inversely proportional? Plot a graph of frictional torque vs. I, and
mass M to substantiate your hypothesis.
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